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Nucleation Near a Critical Temperature 
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In this paper we extend the conventional theory of nucleation to take in 
the effects of excluded-volume interference between the precritical droplets 
present prior to phase transformation. It is shown that, close to the critical 
point, the effect of excluded volume is to cause a sizable increase in the 
surface free energy of the critical nucleus. A corresponding increase in 
the barrier to nucleation explains the large undercoolings achieveable 
experimentally in this region. Our results are compared with recent 
experimental measurements of Heady and Cahn and favorable agreement 
is found. 

KEY WORDS: Nucleation near critical point; excluded volume in nuclea- 
tion; hard sphere boundary tension; scaled particle theory; supercooling 
limit. 

1. INTRODUCTION 

Inves t iga t ions  o f  nuclea t ion  processes near  a cri t ical  t empera tu re  have 
yie lded what  seems to be the unequivocal  exper imenta l  result  tha t  far  greater  
degrees of  metas tab i l i ty  are  possible  than  would  be pred ic ted  by convent ional  
nuclea t ion  theory.  In  par t i cu la r  this s i tuat ion occurs  bo th  in the nucleat ion 
o f  a. new phase  in b ina ry  solut ions o f  methylcyc lohexane  and  perf luoro-  
methylcyc lohexane  (1.2~ cooled  into the miscibi l i ty  gap below the cri t ical  
t empera tu re ,  and  in the fo rma t ion  o f  C02  bubbles  (3~ in l iquid CO2. In the 
respective cases degrees o f  supercool ing  and  superhea t ing  far  in excess o f  
those  requi red  by convent iona l  theory  mus t  be a t ta ined  before  nuclea t ion  is 
observed.  

Sundquis t  and  Oriani  (1~ a t t emp ted  to exp!ain this d iscrepancy by point -  
ing out  tha t  the usual  express ion for  the equi l ibr ium dis t r ibut ion  of  embryos  
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of the new phase is 

N, = F e x p ( -  W , / k T )  (1) 

where N, is the number of embryos containing n molecules, F is the total 
number of Species in the parent phase, and W, is the reversible workrequired 
to form an embryo of n molecules, while k and T are the Boltzmann constant 
and temperature, respectively. However, according to these authors, the 
proper expression is 

N ~  = f x  ~ exp( -  W ~ ~  (2) 

where x is the mole fraction of m o n o m e r s  in the parent phase. If  x departs 
appreciably from unity, as it must near the critical point, then Eq. (2) no 
longer approximates Eq. (1) and the former [Eq. (2)] rather than the latter 
[Eq. (1)] must be used. However, in assessing the experiments only Eq. (1) 
was used. 

Later, Hillig and McCarroll (4) showed that Eq. (1) must still be correct 
and that the problem lies in the incorrect choice of reference state. For 
example, W, has the form 

W~ ~ = n(lxl --  t ~  ~ + an  2t3 (3) 

where/h and p~0 are the chemical potentials of "bu lk"  embryo and parent 
phases, respectively, and an 2~3 represents the free energy required to form 
the interface between the embryo and parent. However, the parent phase is 
considered one composed of monomers alone, whereas this is clearly not the 
case. Assuming that the mixture of monomers and clusters forms an ideal 
solution [an assumption made in arriving at Eqs. (1) and (2)], we obtain for 
the actual chemical potential 

ix~ = t ~  ~ + k T  In x (4) 

Solving for tL~ ~ and substituting the result into Eq. (3) and t h a t  result into 
Eq. (2), we recover Eq. (1) with W~ now defined (properly) not as W~ ~ but as 

W ~  = n(tz~ - tz~) + an  2/3 (5) 

Thus the suggestion of Sundquist and Oriani is not applicable. 
Recently Mou and Lovett (5~ as well as Peak (6~ have attempted to explain 

the discrepancy between theory and experiment, at least for the miscibility 
gap, in terms of the formation of a "depletion layer" surrounding an embryo 
of the new phase. However, these explanations have been criticized (7~ on the 
basis that they do not conform with the requirements of time reversal. 
Furthermore, Reiss and Shugard (8~ have shown that the "classical" theory of 
nucleation omits a term in the chemical potential for a component of a binary 
embryo which, upon reinsertion, merely enlarges the discrepancy. The 
reality of the anomalous behavior seems well established. 
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In the present paper we outline and establish an effect of sufficient 
magnitude to resolve the difficulty. 

2. E X C L U D E D - V O L U M E  E F F E C T S  

Most applications of nucleation theory require a calculation of the 
reversible work needed to produce a critical size embryo, or fluctuation, of 
an inherently more stable nucleating phase. The traditional approach to 
this problem utilizes the capillarity approximation, thereby treating the pre- 
critical embryo as a droplet of the nucleating phase endowed with a surface 
tension and uniform density characteristic of the bulk at equilibrium. More 
recently a diffuse droplet model has been introduced by Cahn and Hilliard. (9) 
Each of these approaches, which are known to become identical near the 
critical point, (2) treats the droplets as being statistically independent from one 
another. The most important result of this paper will be to show that an 
additional positive contribution to the reversible work of droplet formation 
arises when material volume exclusion between droplets is properly taken into 
account. 

The conventional expression for the reversible work W~ which must be 
expended in forming a droplet of the nucleating phase is given by (5), which 
can be rewritten in terms of the experimentally measured interfacial tension 
% as 

W~ = n(th - /xv) + c~0a~ (6) 

where a, is the surface area of the droplet. For  a system cooled into the 
region within the coexistence curve, #z - ~v is negative and W~ will have a 
maximum at a critical size n* beyond which the droplet will continue to grow 
to observable size, indicating the onset of nucleation. Sunquist and Oriani 
have shown that the threshold for perceptible nucleation is expected to occur 
when the height of the barrier Wn, is in the range (60-70)kT. (1) If  the barrier 
height is greater than this, the system will remain in the supercooled state 
for time scales exceeding those of typical observations. Since the reversible 
work given by the relation (5) or (6) pertains to the growth of a single fixed 
drop without other droplets present (or with interactions with other droplets 
ignored), it is necessary to go beyond these equations in a study of volume 
exclusion. 

Consider again a fixed drop of size n, now with a specified distribution 
of other droplets also present in the system. If  the integrity of the distribution 
is to be preserved, droplets cannot overlap. For  example, if two droplets 
overlapped, the overlapping pair would be counted as a single larger droplet 
and the distribution would be altered. The exclusion is therefore in fact a 
"count ing"  restriction in the phase space of the system and has been 
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previously described by Stillinger ~~ and others. ~ Following Reiss, (~2~ we 
will treat the problem by assigning a hard-sphere radius to each droplet. 
Thus, in order for a drop to grow to critical size, it must occupy a volume 
not available to any of the other droplets present. This results in a decrease in 
the total configurational entropy of the system over the value it would have 
if the droplets were independent of one another. 

As a result, the entropy of activation for nucleation is reduced, with a 
consequent reduction in the rate at which nucleation occurs. This is the 
central feature of our explanation of the occurrence of anomalously high 
degrees of metastability near the critical temperature. The remainder of this 
paper represents an attempt to place this qualitative explanation on a 
quantitative basis. 

3. O U T L I N E  OF T H E  D E V E L O P M E N T  

There are quite a few distinct parts to the argument we shall advance. 
It is therefore of value to have a perspective overview of the entire develop- 
ment so that one does not lose sight of the connecting thread when focusing 
on the sometimes absorbing details of a particular step. We provide such an 
overview in this section. 

Throughout  this paper we rely on the well-known "capillarity approxi- 
mat ion"  so that none of the development is more rigorous than the liberties 
taken by this approximation allow. However, the derivation is internally 
consistent with this approximation. A primary task is to show how the 
chemical potential of a drop (cluster) in the supercooled phase differs from 
the conventional form, adopted in nucleation theory, when excluded-volume 
effects are taken into account. This task is undertaken in Section 6, where, 
surprisingly, it emerges that the new formula is the same as the old one 
except for the fact that, where the interracial tension e0 between a liquid and 
its saturated vapor appears in the old formula, one must now use the difficultly 
measurable (perhaps unmeasurable) interfacial tension ~ between the liquid 
and the supersaturated phase. All volume exclusion effects are accounted for 
by this simple change within the limits of the capillarity approximation. 
Along the way, in Section 6, it is necessary to make use of a formula derived 
in Section 4 for the difference between the chemical potential of an ordinary 
molecule and one held stationary. 

Another important step in the development is the evaluation of ~ and 
its relation to %. This is accomplished in Section 5. It is shown that the 
configuration integral for the vapor can be evaluated by a procedure which 
arbitrarily partitions the molecules in the vapor between "physical clusters" 
and "monomers ."  The set of physical clusters may contain monomers, but 
they are formally defined as clusters. In any event the program for evaluating 
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the configurational integral involves separate procedures for those molecules 
defined as "m onomer s "  and those in "clusters." The largest term in the 
evaluation of the "c lus ter"  part of the integral always involves a distribution 
of cluster sizes which depends upon the particular partitioning employed. 
Under many conditions typical of nucleation the integration over the co- 
ordinates of the "monomers"  is independent of the location of the clusters. 
When this is true it may be shown that a can be decomposed into two parts 
ao' and ~Hs, i.e., ~ = %' + ~Hs. Furthermore, if the partitioning is carried 
out by applying the well-known "lever rule" to the coexistence curve of the 
phase diagram, ~0' may be identified with Oo, the interfacial tension between 
the liquid and its saturated vapor. The quantity aHS has the following mean- 
ing when the capillarity approximation is used. 

The clusters (drops) in the vapor phase are regarded as hard spheres 
with a size distribution identical to that of the clusters. One then considers 
the interaction of this fluid mixture of hard spheres with a perfectly hard, 
flat wall. The boundary tension in the fluid against this wall is a~s. Note that 
since the size distribution depends on the partitioning, so does ~ras, but the 
sum ~o' + ~Hs = a is independent of the partitioning. Partitioning according 
to the lever rule is particularly convenient because ao' becomes the measurable 
quantity ao. Furthermore, it turns out that in many situations most of the 
"clusters" are monomers. In this case only the total number of clusters is 
necessary for the evaluation of ~ s ,  and this number is available from the 
lever rule. ei~s can be easily evaluated using scaled particle theory. 

The same development applies to the case of the nucleation of phase 
separation within the miscibility gap of a binary liquid system. Here % is the 
interfacial tension between the two phases which coexist at equilibrium and 

is still given by ao + ~us, when au s is evaluated when most clusters are 
monomers, with the aid of the lever rule. 

With the chemical potential of the cluster available it is then possible 
to calculate the equilibrium distribution of clusters and to use this distri- 
bution in the usual manner in deriving an expression for the rate of nucleation. 
Calculated limits of metastability can then be compared with those deter- 
mined experimentally. 

4. T W O  USEFUL  F O R M U L A S  

In this section we derive some relatively simple formulas which will 
prove useful in the development we have in mind. The first of these is the 
formula for the difference in chemical potentials between an ordinary 
molecule in a phase (which may or may not be multicomponent) and the 
same molecule whose center of mass is constrained to be stationary. In this 
proof  we assume the potential energy of the system to be separable in the 
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center-of-mass and "internal" coordinates of the molecules. We shall be in- 
terested in the chemical potentials of a molecule of the j th  species in a phase of 
volume V. 

The classical phase integral for this system may be written as 

Q({N.}, T, V) = [I--[ '(7"A")N"-'~ (7'JlJ)uJ \ •  N.] ] ~ Z ( { N " } ' T ' V )  (7) 

where {N.} represents the set of numbers in which N. is the number of 
molecules of species n in the system, while 7. is the momentum partition 
function of a molecule of species n, and ,~. is the "internal" partition function 
of a molecule of species n, separable from Z, the configurational integral, 
because of the above-mentioned separability of the potential energy. Z 
depends only on the coordinates of the centers of mass of the various 
molecules. The prime on the continued product indicates that the index j is 
to be omitted. The Helmholtz free energy of the system is given by 

F({N.}, T, V) = - k T  In Q({N~}, T, V) (S) 

For a system having Nj + 1 molecules of species j, Q is given by Eq. (7) 
with Nj + 1 substituted for N s and may be denoted by Q({N.}, 1, T, V) with 
a corresponding free energy 

F({N.}, 1, T, V) = - k T I n  Q({N.}, 1, T, V) (9) 

The chemical potential of the j th  species is then 

t~j = F({N.}. 1, T, V) - F({N.}, T, V) 

= - k r l n  NTJ'~; 1 k T l n  Z({N.},Z({Nn},I,T,T,v)V) (10) 

Next. we write the phase integral for the case where the additional 
molecule of species j has its center of mass held stationary. We have, using 
an obvious notation since the added j-type molecule is now distinguishable 
from the other j-type molecules. 

Q({N.}, 1st, r ,  v)  = ( 1 ~ '  (7.1.)n~.~.~ ] (yj},,)n,N,_______~ ,~jZ({N.}. 1st, T, V) (11) 

and 
F({N.}, 1st, T, V) = - k r l n  Q({N.}, l~t, T, V) (12) 

Then the chemical potential of the stationary molecule is 

~ t =  F({N~}, l~t T, V) - F({N.}, T, V) = - kTln,~ s - k T l n  Z({N'~}' l~t, T, V) 
' Z({N.},  T, V) 

(13) 
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and, combining Eqs. (10) and (13), we find 

~'J kTln Z({Nn}, 1, T, V) (14) 
~j  _ ~ t  = - k T l n  Ny + 1 Z({N,}, 1st, T, V) 

The ratio of Z's on the right of Eq. (14) may be simplified. Thus it is 
well known ~13~ that 

Z({N,}, 1, T, V) = VZ({N,~}, 1st, r ,  v )  (15) 

so that substitution of this relation into Eq. (14) gives 

tzj - i~ t = k T l n  (Nj  + 1)~,j -__ k T l n  N j r j  (16) 
V V 

where on the right we have ignored the difference between Nj + 1 and Nj. 
This is the result we wished to establish. 

Another useful formula can be derived. Suppose the molecules in a 
possibly multicomponent system are divided into two classes, I and II. Now, 
assume that the situation is such that in the configurational partition function 
Z for this system an integration over the coordinates of the molecules in 
class I only is independent of the locations of the molecules of class II. 
Denote this integration by Z~*({N~}~, {N~}~, T, V), where {N,}~ and {N,}~ 
denote the molecular numbers of species in classes I and II, respectively. 
(Note that the same species may form part of each class; the subdivision is 
arbitrary.) Then the total configuration integral is 

where {dr~} is the total volume element of molecules in class II and U~t 
is the potential energy of interaction among molecules of class II only. The 
last step in Eq. (17) follows from the fact that Z~* is independent (by 
assumption) of the coordinates of the molecules of class II. 

Defining 

zi~ = f fv  ... f e-~i~"~ {drh~ (18) 

Eq. (17) may be written as 
Z = Z~*Z~ (19) 

This is the formula we have in mind. 
It is important to note that in Eq. (19) we have not ignored the inter- 

actions between molecules of class I with class II. This is not the basis for the 
factorization, and Z~* is not a conventional configuration integral. The only 
assumption is that the integral, 

= ffv.., f {dr)  (20) 
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in which U1 represents the interaction among molecules of class I alone, and 
Um~, the interclass interaction. Examples of physical situations in which 
Eq. (19) is approximately the case are easy to find. A simple case is furnished 
by a system consisting of a mixture of two kinds of hard spheres, one type of 
sphere being much larger than the other. Then the large hard spheres con- 
stitute, in essence, part of the bounding surface for the effective volume 
containing the small hard spheres. The extent of this surface is approximately 
independent of the locations of the large spheres, and therefore the integral 
over the coordinates of the small spheres is independent of these locations. 
Of course, when two large spheres are close together, some volume between 
them, available to the small spheres when they were further apart, will become 
unavailable. Thus there will be some dependence on the location of the 
large spheres. However, the volume whose availability changes constitutes 
only a small fraction of the whole and so Z~* will be almost independent of the 
locations of the large spheres. When the spheres in both classes are comparable 
in both number and size the volume of changing availability will represent 
an appreciable fraction of the whole and the approximation will lose its strict 
validity. On the other hand, when the number of molecules in class II is 
small compared to the number in class I the approximation will still retain 
its value. 

5. REV ISED C A P I L L A R I T Y  A P P R O X I M A T I O N  

The expression for Wn in Eq. (5) is an example of the "capillarity approxi- 
mat ion"  basic to conventional nucleation theory, a4~ The quantity c, is 
specified by 

= ~, ,o(3V, /4~)  2~3 ( 2 1 )  

in which v~ is the volume per molecule in the bulk of the phase, nucleating 
out of the parent phase, and e0 is the interracial tension between the two 
phases which coexist in equilibrium when the transformation has been 
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Fig. 1. Liquid-vapor coexistence curve for a 
one-component system. The tie line connecting 
the conjugate phases into which the metastable 
state (• separates is indicated as the dashed 
horizontal line. 
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completed. The result we shall arrive at in this section can be shown to apply 
generally to any nucleating system where the capillarity approximation is 
used, but, in the interest of clarity, we shall derive it for the case of nucleation 
of a liquid from supersaturated vapor. It will, for example, be equally 
applicable to phase separation in a binary liquid <1.2~ system supercooled into 
a miscibility gap. 

If  we consider the condensation of a one-component vapor, then a0 is 
the interfacial tension between the liquid and its saturated vapor, while vz is 
the volume per molecule in the bulk liquid. Figure 1 will be helpful in con- 
sidering this system. It illustrates a liquid-vapor coexistence curve for a 
one-component system, temperature on the coexistence curve being plotted 
against molecular number density p. The two-phase region occurs within the 
coexistence curve and is clearly marked in the figure. The critical temperature 
Tc is also indicated. The liquid of density p~ is in equilibrium with vapor of 
density pv, at a temperature T below To. The tie line connecting pv with p~ is 
indicated as the dashed horizontal line. The state of a supersaturated vapor 
phase of density ps is marked by the x lying within the coexistence curve. 
The conventional theory of nucleation models this supersaturated phase as 
consisting of monomers and clusters of the nucleating (liquid) phase. 
Actually, even the saturated vapor at density pv would contain some clusters, 
but as the work of Hillig and McCarroll, (4) cited in Section 1, indicates, these 
are accounted for in the chemical potential ~ of the vapor. The main assump- 
tions of the "capillarity approximation" embodied in this liquid drop model 
are: 

1. The cluster is an incompressible spherical " d r o p "  having macro- 
scopic properties, e.g., a macroscopic interfacial tension a0 and a physically 
abrupt interface with the surrounding phase. 

2. The effects of curvature on interfacial tension are ignored. 
3. There is a replacement free energy correction to the cluster's free 

energy associated with the fluctuation of its center of mass (within the drop).<15~ 
The net effect of this replacement free energy is to change the cluster free 
energy from that of a simple drop by the addition of the term ~5~ 

k T  In 7nv I (22) 

where 7n is the momentum partition function of a particle having the same 
mass as a drop with n molecules and v s is the "volume of fluctuation ''r 
of the center of mass within the drop. 

4. An implicit requirement of the model is that material within different 
clusters does not interact or else clusters will not be distinctly and un- 
ambiguously defined. For  example, two clusters in substantial contact or 
overlap could be counted as a single larger cluster; a "count ing"  procedure 
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employed by a statistical mechanical analysis utilizing sums over well-defined 
distributions will lose its meaning. Thus, within the confines of the con- 
ventional theory, for the purposes of counting, the clusters must be regarded 
as hard spheres which cannot overlap. This requirement is "academic"  in 
the usual situation where the concentration of clusters is low, but, as indi- 
cated in Section 2, becomes important near a critical temperature. 

In the present section we show that cr o is not the proper quantity to be 
used in Eq. (5), i.e., in ~ specified by Eq. (21). Instead, another term ei~s must 
be added to Cro to give cr, essentially the interfacial tension between the cluster 
modeled as a liquid drop and the surrounding supersaturated phase. The 
form of CrHs and consequently of 

= eo + ~ s  (23)  

will be derived. This derivation will be rigorous only within the confines of 
the capillarity approximation, since we still wish to use that approximation, 
which has proved to be a remarkably good predictive tool. The intent is to 
demonstrate the major factors which cause the standard capillarity approxi- 
mation to fail near the critical temperature. A treatment that is more rigorous 
from the beginning is likely to exhibit the same trends near the critical 
point. We shall derive ~rH s for the case of condensation, but the same result 
is applicable, as indicated, to other cases, e.g., phase separation in a binary 
liquid, and we shall apply it to that case. 

As a beginning we make some remarks about the interfacial tension %. 
We consider the situation illustrated in Fig. 2, which shows a mass of liquid 
of volume V~ immersed in its saturated vapor of volume Vv. The interfacial 
area is denoted by Ao, and Nz and Nv are the numbers of molecules in the 
liquid and vapor phases, respectively. In line with the capillarity approxi- 
mation the liquid is regarded as incompressible, e0 is considered independent 
of curvature, and the interface is abrupt. 

We consider the mass of the liquid to be sufficiently large so that its 
shape can be varied to increase Ao while Vz remains constant, and at the same 
time not induce a change of pressure within the liquid. Because of the 
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�9 
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v~ 
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Fig. 2. Liquid mass o f  volume V~ immersed  in its 
saturated vapor  of  volume V~. The interfacial area is 
denoted  by A0 and ~r0 is the interfacial tension. 
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abruptness (in our model) of the interface, the total Helmholtz free energy of 
the system may be presented as 

F = F, + Fv (24) 

where Fz is simply the bulk free energy which N~ molecules of liquid would 
have as part of a homogeneous bulk phase without boundaries and where 
Fv is the free energy of the N~ vapor molecules including their interactions with 
the liquid molecules on the other side of  the abrupt interface. In other words, 
all interfacial effects are included in F~. (In fact there will have to be a gradient 
of density in the vapor near the interface, but as long as we do not have to 
deal with it explicitly we ignore it, remaining faithful to the model.) 

Now, as in the most rudimentary treatment of surface thermodynamics, 
the interfacial tension is defined as 

8F _ [a(F~ + F~)] + N  {SF~ o= (25) 

where the last step follows from the fact that Fz is independent of Ao and 
the assumption that the liquid is of uniform density up to the abrupt interface, 
so that A0 can be changed without changing Vz. Since 

Nz = p~V~ (26) 

this implies that with N~ + N~ constant, N~ will be constant. Furthermore, 
with V~ and Vz + Vv constant, V~ will be constant. We do here have an 
imposition of the material properties, implicit in the capillarity approxi- 
mation, on the thermodynamics, so that Eq. (25) is inapplicable to substances 
in general. Nevertheless it is consistent with the capillarity approximation. 

Now 
F~ = - k T  In Q~ (27) 

where 

Ov = o~(r, Vv, N~, Ao) (28) 

is the partition function of the vapor phase including interactions of the vapor 
molecules with the liquid molecules on the other side of the interface. Sub- 
stitution of Eq. (28) into Eq. (25) gives 

= k r [ ~  In Qv'~ % - \ ~ 1  ~v,v,,,N,, (29) 

Now, in analogy with Eq. (7), Q~ may be expressed as 

Q~ = [(ylA1)Nv/N~ !]Z~(T, V~, Nv, Ao) (30) 

where yl is the momentum partition function of a single molecule and A1 its 
internal partition function, while Z~ is the configurational partition function, 
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dependent on A0 through the interaction of the vapor molecules with the 
liquid. Since neither yl nor A1 depends upon A0, substitution of Eq. (30) into 
Eq. (29) yields 

= k T { a l n Z ~ ]  (31) - 

Now we examine a situation similar to that in Fig. 2 except for the fact 
that the vapor phase is supersaturated. Of  course we will have to introduce a 
" f o r m a l "  constraint to prevent the systems from collapsing to equilibrium. 
Our goal is to determine how the interfacial tension a for this case differs 
f rom ao. The relevance of the question comes from the fact that the "liquid 
d rop"  clusters of  conventional nucleation theory to which the capillarity 
approximation is applied are in fact modeled as liquid masses immersed in a 
supersaturated vapor. '  

We now refer to Fig. 3, which resembles Fig. 2 except for the fact that 
~o has been replaced by ~, and the vapor contains clusters drawn as shaded 
spheres. As we indicated earlier, even the saturated Vapor contains clusters, 
and the clusters considered in the figure are those excess to those found in 
the saturated vapor. Some of them may be indistinguishable from those in the 
saturated vapor. In keeping with the capillarity approximation, we model 
these clusters as incompressible liquid drops. Furthermore, to satisfy the 
statistical "coun t ing"  requirement, the " d r o p s "  cannot overlap one another, 
nor any monomers which are present. Neither can they overlap the liquid 
phase; otherwise the clear distinction between the phases would be lost. 
Hence the clusters must be treated formally as hard spheres, and the liquid- 
vapor  interface, as a hard wall. 

Besides the excess clusters, in Fig. 3, which may themselves include 
monomers,  we show N~' additional molecules. The volume of the super- 
saturated vapor phase is now denoted by V~' and the total volume of the 
"hard-sphere"  clusters will be denoted by Vc. The number N~' of  the 
additional molecules will eventually be chosen so that 

U ~ ' =  p~(V~' - V )  (32) 

�9 

o 

Ao,O" �9 

Fig. 3. Liquid mass immersed in a supersaturated 
vapor prior to nucleation. Shaded circles denote the 
excess clusters, while the clear circles denote the con- 
stituents of the saturated vapor. The interfacial tension 
is ~r. The number of clusters containing n molecules 
is denoted by N~ and the set of cluster numbers by 
{N~}. Here Vc is the total volume of the clusters and 
V~ and V~ are as defined in Fig. 2. 
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where pv is the density of the saturated vapor (on the coexistence curve) at 
temperature T. The reasons for this will become clear, but for the moment we 
have Nv' arbitrary. The number of clusters containing n molecules will now 
be denoted by N~ and the set of cluster numbers by {N~}. 

The partition function of the supersaturated vapor, including inter- 
actions with the liquid phase on the other side of the interface, may now be 
denoted by 

Q~v~ o<~t,~ , , = ~ ~ ,  Vv, N~, {N,}, Ao) (33) 

where the superscript (s) indicates supersaturation. The total number of 
molecules in the vapor is clearly 

Nv' + ~ nN,  = psV~' = U (34) 

The rigorous evaluation of Q~ can be organized so that physical clusters 
play a natural role as "bookkeeping" entities. (16'1v When this is done it 
becomes clear (see Ref. 16) that the subdivision of _N that determines N~' is 
arbitrary and that the total partition function is a sum of terms corresponding 
to all the distributions {N,} that satisfy Eq. (34). Among these distributions 
there is one whose term in the sum is largest and, as usual, this term will 
dominate In Q~S~ and is the only one which need be retained. The {N,} 
appearing in Eq. (33) corresponds to this term. Clearly this {N,} depends on 
the arbitrary choice of N~'. The Nv' molecules themselves may engage in 
clustering, but in performing integrations over their coordinates in Q~ the 
calculation is not explicitly organized along the lines of the cluster formalism. 
Reference 16 does not explicitly treat the case in which some of the molecules 
are not mapped into clusters, but it is easy to see, upon reading it, that this 
hybrid approach is allowable with no loss of generality. Again it is to be 
emphasized that the clusters implicit in the treatment of the N~' additional 
molecules can be identical in constitution with some of those which are 
treated explicitly. 

Adopting this approach, it is possible to write Q~S~ as 

(Y~&)N: l - I  (7"&)~" Z~'(r ,  Vj, ~Vj, {N,}, &)  (35) 
Q ~ -  ~7, i i t ~  

where y,  and ,~, have the same meanings as in Eq. (7), the clusters of n 
molecules themselves being treated as molecules, and the continued product 
going over all cluster sizes. Z~ ~ is the configurational partition function for 
the system. 

Now suppose that the clusters making a dominant contribution to Z~ ~ 
are either large compared to the size of a single molecule or else that the 
total number of clusters is small. Then the factorization of the configurational 



398 Robert M c G r a w  and Howard Reiss 

partition function discussed in Section 3 becomes possible (see discussion 
at the end of Section 3). We have 

Z~>(T, Vv', Nv', {N.}, A0) 
7(s )* / 'T '  ' , ~ (8)* ' = ~v~ t~, Vv - Vc, N~, Ao + N . a . ) Z ~ ( T ,  V~, {N.}) (36) 

in which a. is the surface area of a cluster containing n molecules. The 
functional dependences appearing in Eq. (36) are explained as follows. First, 
the clusters are modeled according to the capillarity approximation. This 
means that the N~' molecules, not treated by use of a cluster formalism, 
behave z~ 7(s~* ~. ~ as a vapor phase of volume V~ - Vc, bounded in part by its 
interface with a fragmented (into drops) but nontheless stationary liquid 
phase of interfacial area Ao + ~ .  N.a . ,  where ~ .  N.a.  is the total interfacial 
area due to the (clusters) drops. So -~i7(~)* is just the configurational partition 
function for this vapor including its interactions with the liquid on the other 
side of the interface. The functional dependence of Z~} )* in Eq. (36) should 
then be obvious. 

7(~> is concerned, since to satisfy the "count ing"  requirement As far as ~vii 
the drops are to be treated as hard spheres, ~7(~) is the configurational parti- 
tion function for a fluid consisting of a mixture of hard spheres having the 
distribution {Am}. The integration over the coordinates of these hard spheres 
goes over the entire volume V,'. Hence we explain the arguments of Z(v}~. 

As we have indicated, for a completely rigorous theory in which the 
clusters are not modeled as liquid drops, the subdivision of molecules into 
vapor and clusters, i.e., the choice of N~' is arbitrary as long as it satisfies 
Eq. (34). A satisfactory theory could be developed with any allowable N~'. 
Presumably a quasiindependence of N~' will be retained even when the rigor 
of the theory is compromised by use of the capillarity approximation. 

Our ultimate goal is the evaluation of a defined in Fig. 3. As is shown 
below, this evaluation evolves as the sum of two terms corresponding, 
respectively, to the two factors on the right of Eq. (36). However, it is con- 
venient to have ~ decomposed so that Eq. (23) holds, i.e., so that one of the 
terms, namely ~0, is the interfacial tension between the liquid and its saturated 
vapor. This will only be true for a particular selection of N/ .  Of course cr~s 
will also depend on N~', whose selection simultaneously determines {N.}. It 
will turn out, however, that there are situations in which only the total 
number of molecules ~ .  nN. in clusters is important in establishing the value 
of e~s and not the details of the distribution {N.}. Since ~o will be a measured 
quantity, depending on the right selection of N. ' ,  and eus will be determin- 
able from the known total number N - N~' of molecules in clusters, the 
value of the desired quantity e will then be available. 

The convenient selection of N~' treats the clusters as "excess" to the 
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vapor phase in a manner which, incidentally, is quite consistent with the 
spirit of the capillarity approximation (although this last is satisfying but not 
necessary). For this purpose (the convenient selection of N~' which allows % 
to be the ordinary measured quantity) the supersaturated phase is described 
as containing clusters not found in a saturated phase. These clusters, modeled 
as liquid drops, are therefore thought of as drops (even if monomers) bathed 
in a saturated vapor. Thus N~' and Vv' - V~ should be chosen so that 

N~'/(V~' - V~) = p~ (37) 

where p~ is the density of the saturated vapor on the coexistence curve. Now 
the density of the supersaturated vapor is 

p~ = N / V v '  (38) 

Now under the capillarity approximation V~ is given by 

V~ = ( N -  N~')/pz (39) 

where N is the total number  of molecules specified by Eq. (34), and p~ is the 
density of the liquid on thel coexistence curve. Equations (37)-(39) can be 
solved to yield 

U -  U~" = Z n U ,  - p~ - p~ pzV~' (40) 
n Pl - -  Pv 

N~' - p' - p~ p~g~' (4I) 
Pl - -  Pv 

Vv - p~ - p~ V~' (42) 
P~ - -  P v  

gv' - go = p~ - ps g ,  (43) 
�9 P z  - -  P v  

The two last equations can be combined to give 

Vc(p~ - ps) = (V~' - Vc)(ps - p~) (44) 

This is simply an example of the well-known "lever rule" for the liquid and 
vapor volumes into which a supersaturated phase separates as the phase 
equilibrium is established. Thus Nv', N -  Nv', Vc, and V~' - Vc are the 
quantities related by the lever rule and the supersaturated phase may be 
thought of as having been constructed in the following manner. 

We begin with liquid and vapor phases, containing N total molecules and 
occupying a total volume Vv', in equilibrium along the coexistence curve. 
Maintaining N and Vv', the liquid phase is fragmented into clusters (drops) 
of the proper distribution and mixed with vapor phase. The resulting system 
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represents the supersaturated phase. The total pressure of the system then 
includes effects due to the cluster "molecules" and exceeds the saturation 
pressure along the coexistence curve. 

It is to be noted that the entire discussion thus far could have been 
carried forth for a binary liquid system. The fact that clusters will now have a 
distribution of composition as well, and that the densities of the two phases 
along the coexistence curve are similar, introduces no difficulty. Just as in the 
liquid-vapor case, the fact that in the supercooled phase of the binary system 
some clusters belonging to each of the separating phases may have identical 
constitutions is of no consequence. However, there will be one difference. 
Since the coexistence curve for a binary liquid system will generally be 
specified in terms of the mole fraction X of one of its components, the 
appropriate "lever rule" will involve mole fractions. Thus we will have 

NA(X~ - XA) = NB(Xe - Xs) (45) 

where NA and NB are the numbers of moles in phases A and B, of mole 
fractions XA and XB in equilibrium along the coexistence curve, into which 
the supercooled phase of mole fraction X~ separates. 

Denoting the molar volumes of phases A and B by VA and VB, re- 
spectively, we then have 

Na = VA/VA and NB = VB/VB (46) 

where VA and VB are the actual volumes of these phases after the separation 
has occurred. The phase we have designated as B is that which describes the 
composition of the nuclei or clusters in the supercooled state. In the ter- 
minology adopted to describe the binary system VB is equivalent to Vc of 
Eq. (44) and, similarly, VA takes the place of Vv ' -  Vc. Substitution of 
Eq. (46) into Eq. (45) and rearranging yields 

VB = Xs - XA VB (47) 
vA x ~ - x ~ v A  

The quantities on the right side of Eq. (47) are readily determined from 
experiment; in fact, if the volume change upon mixing of the phase com- 
ponents is ignored, we have 

VB = X~V1 + (1 - XB)V2 and VA = XAVI + (1 -- XA)V2 (48) 

where V1 and V2 represent the molar volumes of the components in their pure 
form. Equations (47) and (48) will be used in Section 8 to estimate the 
fraction of available volume occupied by clusters (droplets) of the nucleating 
phase in order to determine a~s for the binary liquid. 

Now we return to Fig. 3 and consider the interracial tension a defined 
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in connection with this figure. Clearly a will be given by the analog of Eq. 
(31) for cr0. Thus 

(7 = - kT  [9 In Z~'~ (49) 
\ ~Ao ]~,v~.,N 

Introducing Eq. (36), we get 

(7 = - k T (  -0 In Z~(}'"] [9 In Z~,z] (50) 
9Ao ]r,v~.-vo,No.-kT~ 9Ao ] ~,v,,,~N~ 

where the variables held constant in the partial derivatives are consistent 
with those held constant in Eq. (49), and with the fact that Vc is constant and 
that Eq. (34) applies. Now, as has been shown, ~vzv'(~)* is the configuration 
integral for a vapor phase in contact with a liquid consisting of the central 
mass, in Fig. 3, and the stationary drops. Interactions, across the interface, 
with the liquid are included in ---vzw(~)*. If, as we have discussed, the density of 
this vapor is chosen to be pv, it is the same vapor dealt with in Fig. 2. The 
total interfacial area is 

A = Ao + E N,~a. (51) 
n 

and for this vapor we can write 

ao = - k r  (9 In Z~(f *] (52) 
~.~ ! ~.vo.- ~o,N~. 

where ~o has the same value as in Eq. (31) since ~o is independent of the extent 
of interface and has the same value whether the interface has the extent A or 
Ao. However, with (N,} held constant, 

dA = d(Ao + ~ N~a,~) = dAo (53) 

so that substitution in Eq. (52) gives 

a o = - kT  (-~ In Z~(~ )*] (54) 
~Ao !r.%.-V~,N~. 

When Eq. (54) is substituted into Eq. (50) we get 

(~ = ao - k T  ~ In Z(~])z (55) 

The analysis of the second term on the right of Eq. (55) is quite simple. 
Suppose that in Fig. 2 the vapor consisted of a fluid of hard spheres and 
that the central mass was a hard body, so that the interface was hard and 
could not be violated by the hard-sphere molecules. Then cr o in that figure 
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would be orris, the boundary tension of the hard-sphere fluid, and clearly 
Eq. (31) would be replaced by 

= kr?lnZ 4 
Cr~s - l , ~ ] r , v , ~ u , ~  (56) 

where {N,} stands for the molecular numbers of hard spheres in the fluid. If  
we set V = V~' and let {N~} be the same distribution as appears in ~-vHw(s~, then 
Zas can be identified with Z~}~ and comparison of the second term on the 
right of Eq. (55) with the right-hand side of Eq. (56) shows it to be Crns, for 
the equivalent hard-sphere fluid represented by the drops (clusters). Then 
Eq. (55) becomes 

= ~0 + ~rlS (57) 

This is the result we have been seeking [see Eq. (23)]. It shows that, 
within the limits of the capillarity approximation, the interfacial tension 
between a liquid and a supersaturated vapor is not a0, the measurable inter- 
facial tension between liquid and saturated vapor, but must be augmented by 
e~s, the boundary tension (against the interface regarded as a hard boundary) 
of a fluid consisting of mixture of hard spheres having the same size distri- 
bution as the excess drops (clusters) in the supersaturated vapor. The % in 
Eq. (56) is the interfacial tension between the liquid and its saturated vapor 
only if the evaluation of the vapor configurational partition function is 
undertaken with a partitioning between vapor and clusters according to the 
requirements of the "lever rule". However, ~ itself is independent of the 
particular partitioning, i.e., of  the choice of Nv'. The choice involving 
the application of the lever rule has the advantage of representing % 
by a measurable quantity. 

6. E Q U I L I B R I U M  D I S T R I B U T I O N  OF C L U S T E R S  

In the conventional theory of nucleation (14~ a central step in the deriva- 
tion of an expression for the rate of nucleation is the calculation of the so- 
called equilibrium distribution of clusters in the supersaturated vapor. This 
distribution is required for the application of the principle of detailed balance. 
We now calculate this distribution in a manner which makes it clear that the 
revised interfacial tension, a of Eq. (57), rather than ao is the proper quantity 
to be used in the formula for the distribution. Again our derivation will be 
rigorous only within the limits of the capillarity approximation. We make 
use of a " though t "  experiment illustrated in Fig. 4. 

This figure shows a spherical cluster being extruded from a hypodermic 
syringe into a supercooled or supersaturated vapor at pressure p and tem- 
perature T. The internal pressure of the cluster (spherical drop) is given by 

P = p + (2a/r) (58) 
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Fig. 4. Spherical droplet being extruded from a hypodermic syringe into a supercooled 
vapor at pressure p. Here P is the pressure inside the drop. 

where r is the radius of the drop. The extrusion is accomplished by a press 
which exerts a pressure P as shown. The liquid is also at the temperature T. 
The interfacial tension of the drop is cr rather than a0 since the surrounding 
vapor is supersaturated. When the drop contains n molecules its surface 
area is a . .  Now the net reversible work involved in the addition of the drop to 
the system is 

fo w = [P(r) - p]4rrr 2 dr (59) 

It  is necessary to subtract p from P in the integrand because the element of  
work p(4rrr 2 dr) is returned to the surroundings by the piston (so labeled in 
Fig. 4) because the liquid drop is assumed incompressible, and because we 
are interested in adding the drop to the vapor system, isothermally and at 
constant pressure p. Substitution of Eq. (58) into Eq. (59) and performing 
the integration yields for the work performed at constant T and p, 

wr,p = 4~rr 2or = ~ra~ (60) 

if the final drop is such as to contain n molecules. The subscripts T, p appended 
to w indicate that the process is isothermal and isobaric. 

Now for any isothermal  process undertaken by a closed system, the 
change in Helmholtz free energy of the system is given by 

d F  = D w  (61) 

where D w  is the total  reversible work performed on the system. For an open 

system 

d F  = D w  + (dF)tra.~ (62) 

where (dF)t  . . . .  is the Helmholtz free energy transported into the open system 
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by the matter which enters it. For the process to which Eq. (60) applies 

(dF)trans --- fzdn (63) 

wheref~ is the partial molar Helmholtz free energy in the liquid and dn is the 
differential number of extruded molecules. Then 

d r  = (Dw)~, .  + fz dn (64) 
and 

(AF)~. p = w~,. + f~n = cra.+ J]n (65) 

The change in Gibbs free energy for this same process is 

(Aa)~,p = (AF)~,p + p AV = (AF)~,p + p v .  = ~;a. + fzn + p v .  

= ~a.  + ~ n  + pv~n = ~a.  + n(f~ + pvz) = c;a. + ntzt (66) 

In this equation tz~ is the bulk chemical potential of the added liquid, equal 
to f~ + pvz. There is no difference between f~ at pressure p and that at P, 
since the liquid is regarded as incompressible. 

The (AG)~. p in Eq. (45) is the isothermal, isobaric change in Gibbs free 
energy for the supercooled vapor system upon the addition of a stationary 
drop of size n. If  this drop (cluster) is regarded as a chemical species, then 
(AG)~..v must be its chemical potential ~ ,  

t~ t = (AG)r,p = nt~z + ~a. (67) 

We need the chemical potential t~. for the nonstationary drop. For this 
purpose we can make immediate use of Eq. (16) and get 

t~. = i ~  t + k T l n ( N . / ~ . V )  = nt~ + ~a.  + k T l n ( N n / ~ . V )  (68) 

Now we still must add the replacement free energy from Eq. (22) to/~. given 
by Eq. (68) if we wish to make contact with the most modern form of con- 
ventional nucleation theory. Thus t~. in Eq. (68) is changed to 

N. 
t~  = ntLz + ~a.  + k T  l n ~  + k T  In 7'.v~ 

= n ~  + era. + k T  In ~ N~ (69) 
V 

In order to derive the equilibrium distribution of clusters we note that 
the condition of equilibrium is 

np~ = tz. (70) 

where t~ is the chemical potential of a molecule in the supersaturated phase. 
Substituting Eq. (70) into Eq. (69) and rearranging gives 

N .  = ( V / v l ) e x p { - [ ~ ,  - t~)n + c;a.]/kT} (71) 



Nucleation Near a Critical Temperature 405 

which is the desired result, showing that the capillarity approximation should 
be revised so that e rather than ~0 appears in the expression for the equilib- 
rium distribution of clusters. Substituting Eq. (57) into Eq. (71) then gives 

N~ = V e x p (  -(t~z - tz)n + ~~ - k T  ] (72) 

It may be shown that in systems far from the critical temperature the last 
term in the parentheses in Eq. (72) is practically zero. The expression which 
then remains is the formula from conventional nucleation theory. However, 
near the critical temperature the last term exercises considerable influence. 

7. E V A L U A T I O N  OF arts 

The quantity ~r~s required for use in Eq. (72) may be evaluated in the 
following manner. Consider a fluid consisting of a mixture of hard spheres in 
which the combined volumes of the hard spheres constitute a fraction y of 
the total volume V of the system. Consider the reversible work required to 
introduce an additional hard sphere of radius r into this fluid. This work 
given by the sum 

Wi~s(r) = -~rrapHs + 4~rr2cr~s(r) (73) 

where Prls is the pressure in the fluid, and CrHs(r), the boundary tension at the 
surface of the additional sphere, has been derived by Lebowitz, et al. (18~ 
using scaled particle theory/19~ For cr~s(r) they find 

k T ~  3(b2> Z 1 + _ _  + (74) 
Crns(r) = ~ [ @35 1 y r (b a) 1 - y g \(---b-~] 

where (b), @25, and (b a) are the first three moments of the radius distri- 
bution of the hard-sphere molecules in the mixture. This boundary tension 
depends on curvature 1/r, whereas the Cr~s in Eq. (57), consistent with the 
capillarity approximation, refers to the case of zero curvature. We therefore 
let r in Eq. (74) go to infinity and obtain 

cri~s = ~ 1,(ha) 1 - y ~ \ ( ~ ]  \TL--~] ) (75) 

which is the result we have been seeking. 
In order to obtain the moments of b required for Eq. (75), the distri- 

bution of hard-sphere radii in the mixture must be known. For application 
to nucleation theory this means that the distribution of drop (cluster) sizes 
must be known. In Eq. (57), for example, the required distribution is that 
corresponding to the partitioning (according to the lever rule)which fixes 
Nv' at a value such that % will be the interracial tension between the two 
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phases conjugate to each other along the coexistence curve. Since we do not 
know that distribution, we cannot, in general, use Eq. (75). However, there 
will be situations, which we discuss later, in which most of the " d r o p s "  are 
m o n o m e r s .  In this case @2) = b 2 and (b3) = b 3, where b is the radius of a 
monomer. Since y is determinable from the lever rule, ~ s  is then fully 
determined. These are the situations in which it will be used. 

We must also note, recalling the discussion of Section 1, that the term 
aHsa, appearing in Eq. (72) represents part of the work (the surface part) of 
introducing the cluster into the fluid consisting of the other "excess" clusters. 
Thus, as anticipated, the revision of the theory involves a term due to the 
interaction with these other clusters (actually an excluded-volume effect); 
however, it is only the "surface"  work involved in overcoming the exclusion 
of the other spheres that has to be added. The volume work is already 
accounted for in th, which also appears in Eq. (72). 

8. C O M P A R I S O N  W I T H  E X P E R I M E N T  

In this section we apply the foregoing theory to an interpretation of the 
more recent measurements of Heady and Cahn ~2~ (HC) on the methylcyclo- 
hexane-perfluoromethylcyclohexane system cooled into the immiscibility gap. 
The revised capillarity approximation developed in Section 5 is applied to pre- 
critical droplets of the perfluoromethylcyclohexane-rich phase which nucleates 
out of the supercooled mixture upon reaching a critical degree of undercooling. 

Sufficiently far below the critical point the interracial tension becomes 
large enough that the overwhelming majority of precritical droplets are 
dispersed as "m onomer s "  throughout the supercooled phase. We assume the 
Heady-Cahn data to correspond to a temperature range where this is the case, 
although their higher temperature measurements may not satisfy this 
requirement. After the calculations are complete the validity of this assump- 
tion may be checked. 

We use the subscripts B and.4 to denote, respectively, the perfluoromethyl- 
cyclohexane-rich phase and its conjugate along the coexistence curve. If V~ is 
the volume of phase B per mole of molecules, then we have from Eq. (48) 

VB = XBVc~F1, + (1 -- X~)Vc~I~I, (76) 

with XB denoting the mole fraction of C7F14 in the nucleating phase (phase B) 
and VcTF~, and VcTiq4 the molar volumes of the pure components. 

For  the monomeric radius ? we use the average molecular radius in the 
droplet phase; it is defined as 

= ~4~rL] = ~ [XBVcTFI ,  + (1 -- XB)VcTn~,] z/3 (77) 

where L is Avogadro's number. 
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Use of Eq. (77) implies that the " m o n o m e r "  is being treated as repre- 
sentative of the bulk phase possessing not only the average composition of 
this phase, but a representative fraction of intermolecular volume as well. 
Although such a treatment is consistent with the capillarity approximation, 
it goes beyond it in assuming a specific composition for the precritical 
embryo. The error introduced by this assumption is not expected to be large, 
as any reasonable assignment of the monomeric radius will not lead to results 
substantially different from those obtained here. Additional remarks con- 
cerning the composition of the critical embryo and its relation to that of  the 
bulk phase are given in Section 9. 

In computing the hard-sphere boundary tension using Eq. (75) we set 
(b)  = ~, (b ~) = (~)2, and @3) = (~)3. Our estimate of  Y, the fraction of 
space occupied by the totality of  precritical droplets, follows directly from 
Eqs. (47) and (48) thus: 

VB X~ - XA XJcTF~, + (1 - X~)FoT~I, 
= x~ - x~ XAVo~F1, + (1 -- XA)VoT,,I, (78) 

with 
Y = VB/(VA + VB) (79) 

A properly subscripted X denotes the mole fraction of perfluoromethyl- 
cyclohexane present in phase A, B, or the supercooled state s, respectively. 

The quantities needed to calculate ? = (b)  and Y using Eqs. (77)-(79) 
are directly measurable and consequently no adjustable parameters appear in 
the theory. 

For  convenience we list in Table I the values of these quantities as 
measured by HC (z~ as a function of distance from the critical point. Table I 
also gives the experimentally measure interfacial tension %. Table I I  lists the 
values of f and Y obtained from Eqs. (77)--(79). Also shown in Table I I  are 

Table I. Summary of the Experimental Data (from Ref. 2) Used in the Calcu- 
lation of the Quantit ies Shown in Tables II and III According to the Theory 

Described 

T~ - T, Fc7F14, cm a VcTn14, c m3 X~ X~ X~ cro, dyne/cm 

21.13 195.6 128.4 0.0809 0 . 8 3 9 9  0.0927 0.734 
16.13 196.8 129.1 0.0961 0 . 7 7 9 2  0.1049 0.524 
11.13 197.9 129.9 0.1131 0 . 7 1 1 6  0.1240 0.329 
6.13 199.1 130.6 0.1430 0 . 6 3 0 9  0.1563 0.156 
4.13 199.6 130.9 0.1641 0 . 5 9 0 9  0.1777 0.954 
2.13 200.1 131.2 0.1983 0 . 5 3 9 6  0.2100 0.0417 
1.13 200.4 131.4 0.2273 0 . 5 0 3 2  0.2340 0.0189 

i 



408 Robert  M c G r a w  and Howard  Reiss 

Table I1. Experimental and Calculated Values of AF Needed to Produce 
Nucleation as a Function of Distance f rom the Critical Point a 

To - T, L/~ Y -AF(exp) -AF(cr = %) -AF(tr = Cro + crns) 

21.13 4.18 0.021 2.10 x 106 1.57 x 106 1.99 x 106 
16.13 4.16 0.018 1.13 x 106 9.41 x 105 1.25 x 106 
11.13 4.13 0.023 9.56 x 105 4.64 x 105 8.03 x 105 
6.13 4.10 0.034 6.85 x 105 1.50 x 105 5.81 x 105 
4.13 4.08 0.038 3.48 x 105 7.17 x 104 5.19 x 105 
2.13 4.06 0.040 1.31 x 105 2.07 x 104 4.45 x 105 
1.13 4.04 0.027 2.41 x 104 6.29 x 103 2.23 x 105 

~Units of F are dynes/cmL 

our calculated results, which are compared with experiment. Undercoolings 
required for nucleation are given in terms of AF, the driving free energy per 
unit volume, for the separation of the nucleating phase. In terms of previ- 
ously defined quantities, AF is given as 

AF = 3(/~B -/,)/4~r(f) 3 (80) 

Where a minor notational change has been made; th and/L v of Sections 1 and 
2 are now replaced respectively by/xB, the chemical potential of the "bu lk"  
phase (B phase), and/x, the chemical potential of the system supercooled into 
the miscibility gap. 

Experimental values of 2xF are shown in column four (in units of dynes/ 
cm2). Column five gives the values predicted using the conventional theory, 
Eq. (6). The revised capillarity approximation presented in Section 5 implies 
an equation of the same form as Eq. (6) but with % replaced by e of Eq. (57). 
Substitution of Eq. (57) into Eq. (6) yields 

W(n) = n(th - fly) + (go + Cras)a. (81) 

Using Eqs. (80) and (81), we readily obtain the expression for the barrier 
height in our revised theory 

W(r*) = 16rr(go + a~s)a/3(AF) ~ (82) 

This relationship differs from the conventional expression (1.2~ in that a o has 
been replaced by a of Eq. (57). Column six gives the values of AF obtained 
from Eq. (82), the values predicted from our theory. In both columns, five 
and six, each of the values of AF shown leads to a fixed barrier height of 65kT 
corresponding to the threshold for perceptible nucleation. Since the height of 
the nucleation barrier is inversely proportional to the square of AF and in 
view of the fact that W(r*) appears in the exponent of the rate expression for 
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nucleation, there is seen to be considerable discrepancy between experiment 
and predictions of the conventional theory. For example, at Te - T = 6.13 
deg, using the conventional theory, we find that the barrier height implied by 
the observed undercooling limit is a factor of  20 smaller than predicted, 
whereas in the new theory the barrier height implied by experiment differs 
from its predicted value by less than 40~o and is, in fact, within the range of 
uncertainty set by HC for their measurements. The values of AF calculated 
from Eq. (82) with the assumption of a monomerically dispersed nucleating 
phase are seen to be in much better agreement with experiment at all tem- 
peratures to within 2 deg of the critical point. Closer to Te our calculation 
predicts undercooling larger than observed, a situation just opposite to that 
encountered in the conventional theory. Here the difficulty is more readily 
resolved. As T~ is approached higher order aggregates having the compositio n 
of the nucleating phase will begin to dominate the droplet distribution (as, for 
example, when the range of density correlation increases). These contribute 
less per unit volume to the hard-sphere boundary tension. As may be seen 
from an inspection of Eq. (75), the assumption of a monomeric dispersion 
leads to values of AF that are too high near the critical point. 

Table I I I  separates the barrier to nucleation, given by our theory, into 
its three components. Each of these is evaluated at the drop radius r* for 
which the barrier height assumes its maximum value W(r*). The fourth 
column in Table I I I  corresponds to the first term on the right side of Eq. (81), 
which derives from undercooling. The second column gives the contribution 
to the barrier resulting from the interfacial tension o o. Finally, the third 
column gives the contribution resulting from the hard-sphere boundary 
tension. This last term, as discussed previously, accounts for the excluded- 
volume interactions between droplets. Far below Tc the contribution to the 

Table III. Evaluation of the Components of the Nucleation Barrier According 
to Our Theory a 

To-T,  47r(r*)%o 4~r(r*)2~Hs 47r(r*)3AF W(r*) r*(a=ao+oas), r*(-=ao) 
deg kT kT 3kT kT cm cm 

21.13 166.6 28 .4  -130.0 65 8.63 • 10 -7 9.33 • 10 -7 
16.12 161.4 33 .5  -129.9 65 1.01 • 10 -6 1.11 • 10 -6 
11.13 135.3 59 .6  -129.9 65 1.18 • 10 -6 1.42 x 10 -6 
6.13 79.2 115.6 --129.8 65 1.32 x 10 -6 2.07 x 10 -6 
4.13 52.1 142.7 -129.8 65 1.38 x 10 -6 2.66 • 10 -6 
2.13 25.2 169.7 -129.9 65 1.45 x 10 -6 4.04 x 10 -6 
1.13 18.1 177.2 -130.3 65 1.83 x 10 -6 6.01 x 10 -6 

a The critical radius used is shown in column six, and column seven gives the critical 
radius predicted in the absence of excluded volume. 
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barrier height from the interracial tension greatly overshadows that due to 
the excluded-volume interference between droplets and the conventional 
theory is recovered. Closer to Tc, Table I l l  shows that the excluded-volume 
term dominates in accordance with the failure of the conventional theory in 
this region. Columns six and seven give the critical radius of the droplet 
predicted according to our theory and the conventional theory, respectively. 3 
The excluded-volume interaction between droplets is seen to result in critical 
nuclei that are substantially smaller than those predicted using the con- 
ventional theory. For example, at Tc - T - -  6.13 deg the critical droplet is 
predicted, by our theory, to contain 3.4 x 104 "monomers" ,  while the 
conventional theory leads to a corresponding value of 1.3 x 105 for this 
quantity. 

The failure of the conventional theory can be clearly seen when the 
surface tension needed to bring the conventional theory into agreement with 

3 In each theory a fixed barrier height of 65kT was assumed. 
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Fig. 5. Experimental and calculated interfacial free energy vs. degrees below the critical 
temperature. Circles are obtained using Eq. (57). 
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the experimental undercoolings is compared to the measured value %. 
Heady and Cahn made such a comparison (2~ in their Fig. 7, which we re- 
produce here, indicating the error bounds assigned by the authors as their 
best estimate of the overall error in the calculated and measured values of the 
interfacial free energy. Figure 5 illustrates this comparison. The solid line is 
the measured interfacial tension %, while the vertical error bars indicate the 
value range expected for % from the conventional theory (HC assume a 107o 
uncertainty in their critical undercooling). Also shown in the figure are the 
values of e calculated using our theory, i.e., Eq. (57). It is seen that the 
conventional theory fails precisely where ~ s  becomes large enough that a 
differs noticeably from %. Again ~ is too high close to Tc since our assump- 
tion of a dispersion of monomers becomes invalid. Our calculated ~ is, 
nevertheless, an upper bound in this region. 

9. S U M M A R Y  A N D  D I S C U S S I O N  

In this paper we have developed a theory within the framework of the 
capillarity approximation of classical nucleation theory and which contains 
no adjustable parameters. We did this by (a) choosing conditions where 
formal "monomeric"  clusters dominate the cluster distribution, (b) using the 
lever rule in a partitioning of the supercooled phase arbitrarily into clusters 
having the uniform composition of the nucleating phase and a surrounding 
environment having the composition of the phase conjugate to the nucleating 
phase along the coexistence curve, and (c) using scaled particle theory to 
quantititively evaluate the excluded-volume interference between clusters 
treated formally as drops. 

The results are quite good where they should be and deviate in the 
expected manner where they should not. Furthermore, the theory we have 
described is unique in that it provides a consistent mechanism for the 
achievement of greater, rather than lesser, supercoolings than those predicted 
by the conventional theory. This trend, i.e., toward higher supercooling, 
might be expected to continue as the critical point is approached, although 
some of the approximations used in our development of the theory are ex- 
pected to become less valid in this region. 

Finally, it is appropriate to make a few remarks, in the spirit of "notes 
added in proof," concerning points not treated in our development up to 
n O W .  

(i) In applying the capillarity approximation to the methylcyclohexane- 
perfluoromethylcyclohexane binary mixture we have assumed the composi- 
tion of the critical embryo to lie along the coexistence curve. In essence this 
is equivalent to the use of the tangent rule by Heady and Cahn in their 
specification of the nucleus size and composition in binary systems since their 
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method leads to the prediction of a nucleus having a composition close to 
that of one branch of the coexistence curve. Further support for this choice 
comes from a recent and more complete thermodynamic study on the 
composition of nuclei in binary mixtures (8~ which indicates that the "cor rec t "  
nucleus composition is indeed close to that obtained by the tangent rule near 
the critical point. The differences that are found are too small to have a 
bearing on the results we present here. 

(ii) Following the treatment given in Refs. 1 and 2, we have assumed that 
the barrier height at the threshold for perceptible nucleation is of the order of  
(60-70)kT over the range of the study. This is equivalent to assuming that 
there is no appreciable change in the preexponential factor of  the nucleation 
rate expression over this same range. Now, it has been proposed (2~ that 
there is a "slowing down"  in the rate of nucleation near the critical point due 
to a reduction in size of  this preexponential factor. None of these theories are, 
however, sufficiently well developed to yield quantitative results that can be 
compared to experiment. Furthermore, in these arguments the reduction 
occurs due to an increased clustering, to an extent that the clusters which 
dominate the distribution are of higher order than monomeric. We have 
shown here that the conventional theory of nucleation fails even in the 
absence of such clustering and for reasons which are completely different in 
origin. Since our results are reported in a range where monomers apparently 
dominate the distribution, no significant change in the preexponential factor 
is expected to occur. Furthermore,  in the realm that clustering does occur 
(apparently within 2 deg of Tc if our interpretation of the deviation in Fig. 5 
is correct) its pr imary effect on the rate expression will almost certainly be in 
the reduction of the boundary tension aHs appearing in the exponent, leading 
to an increase in the nucleation rate since this is known to be a much less 
sensitive function of the kinetically determined preexponential factor than 
it is of  the surface free energy. 
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